U.S. LTE Network Infrastructure Spending Forecast, 2014-2019

Market Study Fourth Quarter, 2015

U.S. LTE Network Infrastructure Spending Forecast, 2014-2019

Market Study

Published Fourth Quarter, 2015 Version 1.0 Report Number: 4Q2015-01

*iG*R Inc. 12400 W. Hwy 71 Suite 350 PMB 341 Austin TX 78738

Table of Contents

Abstract	1
Executive Summary	3
Figure A: Total U.S. LTE Infrastructure Build Spending, 2014-2019 (\$M)	
Figure B: Percentage Breakdown of U.S. LTE Infrastructure Depreciated Spending, 201	L 4 -
2019	4
Figure C: Share of U.S. LTE Infrastructure Spending by Component, 2014-2019	5
Figure D: U.S. Total LTE Network Operating Costs, 2014-2019 (\$M)	
Figure E: Total U.S. LTE Network Build and Operating Spending, 2014-2019 (\$M)	
Figure F: Total U.S. LTE Network Build Spending, 2014-2019 (\$M) by type of cell	
Figure G: Total U.S. LTE Network Operating Spending, 2014-2019 (\$M) by type of cell.	
Figure H: Total U.S. LTE Network Build and Operating Spending, 2014-2019 (\$M, Total	i) 9
Methodology	
Model Assumptions	
Variance from mobile operator financial disclosures	11
U.S. LTE Cost Estimates	13
U.S. Operators' LTE Status	13
Verizon Wireless	13
AT&T	15
Sprint	17
T-Mobile US	18
U.S. Cellular	19
Other U.S. Operators	20
U.S. LTE Subscriber Estimates & Forecast	21
U.S. Cellular Connections Growth	21
Table 1: Forecasted U.S. Cellular Connections Growth, 2014-2019 (Millions)	21
Figure 1: Forecasted U.S. Cellular Connections Growth, 2014-2019 (Millions)	22
U.S. LTE Subscriber Growth	
Table 2: Assumed U.S. LTE Penetration of Total Connection Base, 2014-2019	
Figure 2: Assumed U.S. LTE Penetration of Total Connection Base, 2014-2019	
Table 3: Average U.S. LTE Connections, 2014-2019 (Millions)	
Figure 3: Average U.S. LTE Connections, 2014-2019 (Millions)	
U.S. LTE Mobile Data Traffic Forecast	
Table 4: Assumed Total U.S. LTE Network Usage, 2014-2019 (GB)	
Figure 4: Assumed Total U.S. LTE Network Usage, 2014-2019 (GB)	
U.S. LTE Infrastructure Build Cost Forecast	
Table 5: U.S. LTE Infrastructure Build Spending, 2014-2019 (\$M)	
Figure 5: U.S. LTE Infrastructure Build Spending, 2014-2019 (\$M)	
Figure 6: U.S. Total LTE Infrastructure Build Spending, 2014-2019 (\$M)	
U.S. LTE infrastructure build spending by network component	
Table 6: U.S. LTE Infrastructure Spending by Component, 2014-2019 (\$M)	
Figure 7: U.S. LTE Infrastructure Build Spending by Component, 2014-2019 (\$M)	29

	Table7: Share of U.S. LTE Infrastructure Spending by Component, 2014-2019	30
	Figure 8: Share of U.S. LTE Infrastructure Spending by Component, 2014-2019	30
	U.S. LTE Densification Spending	30
	Table 8: U.S. LTE Infrastructure Spending by Type of Cell, 2014-2019 (\$M)	31
	Figure 9: U.S. LTE Infrastructure Spending by Type of Cell, 2014-2019 (\$M)	31
	Table 9: Share of U.S. LTE Infrastructure Spending by Type of Cell, 2014-2019	
	Figure 10: Share of U.S. LTE Infrastructure Spending by Type of Cell, 2014-2019	32
	U.S. LTE Network Operating Cost Forecast	
	Table 10: U.S. LTE Network Operating Costs, 2014-2019 (\$M)	33
	Figure 11: U.S. LTE Network Operating Costs, 2014-2019 (\$M)	
	Figure 12: U.S. Total LTE Network Operating Costs, 2014-2019 (\$M)	35
	U.S. LTE DAS and Outdoor Small Cell Operating Cost	35
	Table 11: U.S. LTE Operating Costs by Type of Cell, 2014-2019 (\$M)	35
	Figure 13: U.S. LTE Operating Costs by Type of Cell, 2014-2019 (\$M)	36
	Table 12: Share of U.S. LTE Operating Costs by Type of Cell, 2014-2019	36
	Figure 14: Share of U.S. LTE Operating Costs by Type of Cell, 2014-2019	37
	U.S. Total LTE Network Cost Forecast	37
	Table 13: Total U.S. LTE Network Build and Operating Spending, 2014-2019 (\$M, Total)	38
	Figure 15: Total U.S. LTE Network Build and Operating Spending, 2014-2019 (\$M, Total).	38
NЛ	ajor LTE Infrastructure Vendor Profiles	20
	Airspan Networks	
	Airvana	
	Alcatel-Lucent	
	Figure 16: Alcatel-Lucent IP Mobile Core	
	American Tower	
	Argela	
	Cisco	
	Figure 17: Cisco Universal Small Cell Solution	
	ClearSky Technologies	
	Crown Castle	
	Ericsson	
	Fujitsu Network Communications	
	Gemtek	
	Huawei	
	ip.access	
	Juni	
	Juniper Networks	
	NEC	
	Nokia Networks	
	Oracle	
	Figure 18: Oracle Communications Security Gateway	
	Public Wireless	
	Quortus	
	Ruckus Wireless	
	Samsung Electronics	
	- · · · · · · · · · · · · · · · · · · ·	

Quoting information from an *iG*illottResearch publication: external — any *iG*illottResearch information that is to be used in press releases, sales presentations, marketing materials, advertising, or promotional materials requires prior written approval from *iG*illottResearch. *iG*illottResearch reserves the right to deny approval of external usage for any reason. Internal-quoting individual sentences and paragraphs for use in your company's internal communications activities does not require permission from *iG*illottResearch. The use of large portions or the reproduction of any *iG*illottResearch document in its entirety does require prior written approval and may have some financial implications.

Copyright © 2015 *iG*illottResearch, Inc. Reproduction is forbidden unless authorized.

FOR INFORMATION PLEASE CONTACT IAIN GILLOTT (512) 263-5682.

SBA Communications Corporation (SBA)	96
Sercomm	
SpiderCloud Wireless	
Figure 19: SpiderCloud E-RAN System	
Taqua	
ZTE Corporation	105
Definitions	110
General	110
Device Types	110
Services	
Network Technology	111
About <i>iG</i> R	116
Disclaimer	116

Abstract

Long Term Evolution (LTE) networks are now firmly established in the U.S. with the majority of mobile subscribers using LTE devices. To meet the increasing demand for mobile bandwidth, especially to support video, the larger mobile operators are in the process of upgrading their LTE networks, and densifying the cellular architecture.

*iG*R forecasts that the LTE market will continue to grow and dominate the U.S. mobile landscape for the foreseeable future. *iG*R expects that subsequent versions of LTE (and the associated new features) will form the basis of new 5G networks in the next few years. To support additional LTE capacity, mobile operators are increasingly refarming 2G spectrum, as well as acquiring additional spectrum resources through auctions and private transactions.

The demand for mobile data bandwidth will continue to rise and mobile operators are continually balancing their network spending between coverage and capacity. The engineers strive to provide sufficient coverage to be competitive and sufficient capacity to meet the needs of the growing subscriber base, while minimizing unnecessary network spending. As well as spending on new network builds, this includes minimizing network operating costs wherever possible.

The total LTE network build and operating costs are forecast to rise over the next five years, as more consumers use LTE, more devices are added to the networks and more bandwidth is consumed. While *iGR* expects the overall LTE network operating cost to increase, the operating expense per GB will decline due to increased efficiencies in the network. This includes adding additional channels to existing cell sites and deploying new sites on roof tops, street poles and other 'small cell' locations.

This report forecasts the LTE infrastructure investment and network operating costs per operator in the U.S., forecasts the spending split by network component, and forecasts the spending split by macro cell sites, DAS and small cells.

Key questions addressed:

- How much mobile data will the LTE networks carry in the U.S.?
- How will the amount of data traffic carried on LTE networks grow in the U.S. in the next five years?
- What is the forecast for the number of LTE subscribers in the U.S. in the next five years?

- How much mobile data is each LTE subscriber expected to consume and how does this change?
- Which operators are investing the most in LTE networks?
- How much of the LTE network build and operating spending is for macro cell sites, DAS and small cells?
- What is the impact of densification on LTE spending?
- How much are U.S. operators investing in LTE both individually and in the aggregate?
- How big is the LTE infrastructure opportunity in the U.S. in the next five years?
- What is the share of LTE infrastructure spending on the network components in the next five years?
- How big are the LTE operating costs in the next five years?
- How do the network build and operating cost forecasts vary by operator?

Who should read this report?

- Mobile network operators
- LTE network infrastructure vendors
- Small cell and DAS OEMs
- Financial and investment analysts.